extension | φ:Q→Aut N | d | ρ | Label | ID |
(C23×C8)⋊1C2 = C23.22M4(2) | φ: C2/C1 → C2 ⊆ Aut C23×C8 | 64 | | (C2^3xC8):1C2 | 128,601 |
(C23×C8)⋊2C2 = C23.23D8 | φ: C2/C1 → C2 ⊆ Aut C23×C8 | 64 | | (C2^3xC8):2C2 | 128,625 |
(C23×C8)⋊3C2 = C22×C22⋊C8 | φ: C2/C1 → C2 ⊆ Aut C23×C8 | 64 | | (C2^3xC8):3C2 | 128,1608 |
(C23×C8)⋊4C2 = C2×(C22×C8)⋊C2 | φ: C2/C1 → C2 ⊆ Aut C23×C8 | 64 | | (C2^3xC8):4C2 | 128,1610 |
(C23×C8)⋊5C2 = C22×D4⋊C4 | φ: C2/C1 → C2 ⊆ Aut C23×C8 | 64 | | (C2^3xC8):5C2 | 128,1622 |
(C23×C8)⋊6C2 = C2×C23.24D4 | φ: C2/C1 → C2 ⊆ Aut C23×C8 | 64 | | (C2^3xC8):6C2 | 128,1624 |
(C23×C8)⋊7C2 = D4×C2×C8 | φ: C2/C1 → C2 ⊆ Aut C23×C8 | 64 | | (C2^3xC8):7C2 | 128,1658 |
(C23×C8)⋊8C2 = C2×C8⋊7D4 | φ: C2/C1 → C2 ⊆ Aut C23×C8 | 64 | | (C2^3xC8):8C2 | 128,1780 |
(C23×C8)⋊9C2 = C23×D8 | φ: C2/C1 → C2 ⊆ Aut C23×C8 | 64 | | (C2^3xC8):9C2 | 128,2306 |
(C23×C8)⋊10C2 = C24.144D4 | φ: C2/C1 → C2 ⊆ Aut C23×C8 | 32 | | (C2^3xC8):10C2 | 128,1782 |
(C23×C8)⋊11C2 = C22×C4○D8 | φ: C2/C1 → C2 ⊆ Aut C23×C8 | 64 | | (C2^3xC8):11C2 | 128,2309 |
(C23×C8)⋊12C2 = C2×C8⋊8D4 | φ: C2/C1 → C2 ⊆ Aut C23×C8 | 64 | | (C2^3xC8):12C2 | 128,1779 |
(C23×C8)⋊13C2 = C23×SD16 | φ: C2/C1 → C2 ⊆ Aut C23×C8 | 64 | | (C2^3xC8):13C2 | 128,2307 |
(C23×C8)⋊14C2 = C2×C8⋊9D4 | φ: C2/C1 → C2 ⊆ Aut C23×C8 | 64 | | (C2^3xC8):14C2 | 128,1659 |
(C23×C8)⋊15C2 = C42.264C23 | φ: C2/C1 → C2 ⊆ Aut C23×C8 | 32 | | (C2^3xC8):15C2 | 128,1661 |
(C23×C8)⋊16C2 = C23×M4(2) | φ: C2/C1 → C2 ⊆ Aut C23×C8 | 64 | | (C2^3xC8):16C2 | 128,2302 |
(C23×C8)⋊17C2 = C22×C8○D4 | φ: C2/C1 → C2 ⊆ Aut C23×C8 | 64 | | (C2^3xC8):17C2 | 128,2303 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
(C23×C8).1C2 = C2×C22.7C42 | φ: C2/C1 → C2 ⊆ Aut C23×C8 | 128 | | (C2^3xC8).1C2 | 128,459 |
(C23×C8).2C2 = C23.29C42 | φ: C2/C1 → C2 ⊆ Aut C23×C8 | 64 | | (C2^3xC8).2C2 | 128,461 |
(C23×C8).3C2 = C2×C22.4Q16 | φ: C2/C1 → C2 ⊆ Aut C23×C8 | 128 | | (C2^3xC8).3C2 | 128,466 |
(C23×C8).4C2 = C24.132D4 | φ: C2/C1 → C2 ⊆ Aut C23×C8 | 64 | | (C2^3xC8).4C2 | 128,467 |
(C23×C8).5C2 = C2×C4.C42 | φ: C2/C1 → C2 ⊆ Aut C23×C8 | 64 | | (C2^3xC8).5C2 | 128,469 |
(C23×C8).6C2 = C8×C22⋊C4 | φ: C2/C1 → C2 ⊆ Aut C23×C8 | 64 | | (C2^3xC8).6C2 | 128,483 |
(C23×C8).7C2 = C23.21M4(2) | φ: C2/C1 → C2 ⊆ Aut C23×C8 | 64 | | (C2^3xC8).7C2 | 128,582 |
(C23×C8).8C2 = C24.135D4 | φ: C2/C1 → C2 ⊆ Aut C23×C8 | 64 | | (C2^3xC8).8C2 | 128,624 |
(C23×C8).9C2 = C2×C22⋊C16 | φ: C2/C1 → C2 ⊆ Aut C23×C8 | 64 | | (C2^3xC8).9C2 | 128,843 |
(C23×C8).10C2 = C22×Q8⋊C4 | φ: C2/C1 → C2 ⊆ Aut C23×C8 | 128 | | (C2^3xC8).10C2 | 128,1623 |
(C23×C8).11C2 = C22×C4⋊C8 | φ: C2/C1 → C2 ⊆ Aut C23×C8 | 128 | | (C2^3xC8).11C2 | 128,1634 |
(C23×C8).12C2 = C2×C42.6C22 | φ: C2/C1 → C2 ⊆ Aut C23×C8 | 64 | | (C2^3xC8).12C2 | 128,1636 |
(C23×C8).13C2 = C23.22D8 | φ: C2/C1 → C2 ⊆ Aut C23×C8 | 64 | | (C2^3xC8).13C2 | 128,540 |
(C23×C8).14C2 = C22×C2.D8 | φ: C2/C1 → C2 ⊆ Aut C23×C8 | 128 | | (C2^3xC8).14C2 | 128,1640 |
(C23×C8).15C2 = C2×C8.18D4 | φ: C2/C1 → C2 ⊆ Aut C23×C8 | 64 | | (C2^3xC8).15C2 | 128,1781 |
(C23×C8).16C2 = C23×Q16 | φ: C2/C1 → C2 ⊆ Aut C23×C8 | 128 | | (C2^3xC8).16C2 | 128,2308 |
(C23×C8).17C2 = C24.19Q8 | φ: C2/C1 → C2 ⊆ Aut C23×C8 | 32 | | (C2^3xC8).17C2 | 128,542 |
(C23×C8).18C2 = C2×C23.25D4 | φ: C2/C1 → C2 ⊆ Aut C23×C8 | 64 | | (C2^3xC8).18C2 | 128,1641 |
(C23×C8).19C2 = C22×C8.C4 | φ: C2/C1 → C2 ⊆ Aut C23×C8 | 64 | | (C2^3xC8).19C2 | 128,1646 |
(C23×C8).20C2 = C24.133D4 | φ: C2/C1 → C2 ⊆ Aut C23×C8 | 64 | | (C2^3xC8).20C2 | 128,539 |
(C23×C8).21C2 = C22×C4.Q8 | φ: C2/C1 → C2 ⊆ Aut C23×C8 | 128 | | (C2^3xC8).21C2 | 128,1639 |
(C23×C8).22C2 = C23.36C42 | φ: C2/C1 → C2 ⊆ Aut C23×C8 | 64 | | (C2^3xC8).22C2 | 128,484 |
(C23×C8).23C2 = C24.5C8 | φ: C2/C1 → C2 ⊆ Aut C23×C8 | 32 | | (C2^3xC8).23C2 | 128,844 |
(C23×C8).24C2 = C22×C8⋊C4 | φ: C2/C1 → C2 ⊆ Aut C23×C8 | 128 | | (C2^3xC8).24C2 | 128,1602 |
(C23×C8).25C2 = C2×C8○2M4(2) | φ: C2/C1 → C2 ⊆ Aut C23×C8 | 64 | | (C2^3xC8).25C2 | 128,1604 |
(C23×C8).26C2 = C22×M5(2) | φ: C2/C1 → C2 ⊆ Aut C23×C8 | 64 | | (C2^3xC8).26C2 | 128,2137 |